

MLPro - Machine Learning Professional

MLPro [https://github.com/fhswf/MLPro.git] is a synoptic framework for standardized machine learning tasks in Python!

MLPro was developed in 2021 by Automation Technology team at Fachhochschule Südwestfalen [https://www.fh-swf.de/de/forschung___transfer_4/labore_3/labs/labor_fuer_automatisierungstechnik__soest_1/standardseite_57.php].

MLPro provides complete, standardized, and reusable functionalities to support your scientific research or industrial project in machine learning.

In MLPro, we provide a standarized Python package for conducting research in reinforcement learning (RL) and game
theoretical (GT) approaches, including environments, algorithms, multi-agent RL (MARL), and many more. Additionally, we
enable our users to reuse the available packages by developing wrapper classes.

Moreover, MLPro focuses not only on Model-Free but also Model-Based RL problem.

Github repository: https://github.com/fhswf/MLPro.git

Main Contributions

	Test-driven development

	Clean code

	Ready-to-use functionalities

	Usability in scientific, industrial and educational contexts

	Extensible, maintainable, understandable

	Attractive UI support

	Reuse of available state-of-the-art implementations

	Clear documentations

Instructions for use

Introduction

	What is MLPro?

	Getting Started
	Installation

	Hello World

	Architecture

	Dependencies

MLPro-BF – Basic Functions

	Mathematics

	Machine Learning
	Adaptivity

	Hyperparameter Tuning

MLPro-RL – Reinforcement Learning

	Overview

	Agents
	Policy

	Model-Based Agents

	Multi-Agents

	Custom Algorithms

	Environments
	Multi-Agent Environments

	Custom Environments

	Scenarios

	Pool
	Policies

	Advantage Actor Critic (A2C)

	Soft Actor-Critic (SAC)

	Environments
	Grid World Problem

	Multi-Cartpole

	Bulk Good Laboratory Plant (BGLP)

	Robot Manipulator on Homogeneous Matrix

	Universal Robots 5 Joint Control

	Scenarios

	3rd Party Support
	OpenAI Gym Environments

	PettingZoo Environments

	Ray RLlib

	Examples
	Basic Functions

	Reinforcement Learning

	Game Theory

	User Interface

MLPro-GT – Game Theory

	Game Theory

MLPro-UI – Interactive ML

	UI Framework SciUI
	Interactive Reinforcement Learning

Project MLPro

	Release Notes
	Version XX.XX.XX

	Papers

	Contribution

Citing MLPro

To cite this project in publications:

@misc{...
}

Contact Data

Mail: mlpro@listen.fh-swf.de

What is MLPro?

Add text here!

Getting Started

Add text here!

	Installation

	Hello World

Installation

Requirements

	python version 3.0 or higher

Install package from PyPI

MLPro is listed in PyPI, thus you can install MLPro library by executing:

pip install mlpro

Install package from GitHub

MLPro is also available in GitHub, where you are welcome to access MLPro package
as well as contribute for the further improvements.

pip install git+https://github.com/fhswf/MLPro.git

Alternatively, you can also directly clone MLPro repository into your desired directory.

git clone https://github.com/fhswf/MLPro.git

Hello World

Add text here!

Architecture

Add text here!

Dependencies

Add text here!

Mathematics

MLPro [https://github.com/fhswf/MLPro.git] provides a module that consists of common
machine learning functionalities and properties. Additionally, you can also find modules
for basic mathematical classes and various classes with elementry functionalties to be
reused in higher level classes, for example: logging, load/save, timer, data storing, etc.

We provide how to files related to this subject.

This module includes Dimension, Set, Element, ElementList, MSpace, and Espace classes.

from mlpro.bf.math import *

Additional module includes load/save, logging, set timer, data storing, data loading, and
data plotting functionalities.

from mlpro.bf.various import *

Add text here!

Machine Learning

This module includes hyperparameter setting, hyperparameter tuning, adaptive, and buffer
classes.

from mlpro.bf.ml import *

Add text here!

	Adaptivity

	Hyperparameter Tuning

Adaptivity

Add text here!

Hyperparameter Tuning

Add text here!

Overview

Add text here!

Agents

Add text here!

	Policy

	Model-Based Agents

	Multi-Agents

	Custom Algorithms

Policy

Add text here!

Model-Based Agents

Add text here!

Multi-Agents

Add text here!

Custom Algorithms

	Policy Creation

To create a RL policy that satisfies MLPro interface is pretty direct.
You just require to assure that the RL policy consists at least these following 3 main functions:

from mlpro.rl.models import *

class MyPolicy(Policy):
 """
 Creates a policy that satisfies mlpro interface.
 """
 C_NAME = 'MyPolicy'

 def __init__(self, p_state_space:MSpace, p_action_space:MSpace, p_ada=True, p_logging=True):
 """
 Parameters:
 p_state_space State space object
 p_action_space Action space object
 p_ada Boolean switch for adaptivity
 p_logging Boolean switch for logging functionality
 """

 super().__init__(p_ada=p_ada, p_logging=p_logging)
 self._state_space = p_state_space
 self._action_space = p_action_space
 self.set_id(0)

 def adapt(self, *p_args) -> bool:
 """
 Adapts the policy based on State-Action-Reward (SAR) data that will be expected as a SAR
 buffer object. Please call super-method at the beginning of your own implementation and
 adapt only if it returns True.

 Parameters:
 p_arg[0] SAR Buffer object
 """

 if not super().adapt(*p_args): return False

 return True

 def clear_buffer(self):
 """
 Intended to clear internal temporary attributes, buffers, ... Can be used while training
 to prepare the next episode.
 """

 def compute_action(self, p_state:State) -> Action:
 """
 Specific action computation method to be redefined.

 Parameters:
 p_state State of environment

 Returns:
 Action object
 """

This class represents the policy of a single-agent. It is adaptive and can be trained with
State-Action-Reward (SAR) data that will be expected as a SAR buffer object.

The three main learning paradigms of machine learning to train a policy are supported:

	Training by Supervised Learning: The entire SAR data set inside the SAR buffer shall be adapted.

	Training by Reinforcement Learning: The latest SAR data record inside the SAR buffer shall be adapted.

	Training by Unsupervised Learning: All state data inside the SAR buffer shall be adapted.

Furthermore a policy class can compute actions from states.

Hyperparameters of the policy should be stored in the internal object self._hp_list, so that
they can be tuned from outside. Optionally a policy-specific callback method can be called on
changes. For more information see class HyperParameterList.

To set up a hyperparameter space, please refer to our how to File 04
or here [https://github.com/fhswf/MLPro/blob/main/examples/bf/Howto%2004%20-%20(ML)%20Hyperparameters%20setup.py].

	Policy from Third Party Packages

In addition, we are planning to reuse Ray RLlib in the near future. For more updates,
please click here.

	Algorithm Checker

A test script using unittest to check the develop policies will be available soon!

Environments

Add text here!

	Multi-Agent Environments

	Custom Environments

Multi-Agent Environments

Add text here!

Custom Environments

	Environment Creation for Simulation Mode

To create an environment that satisfies MLPro interface is immensly simple and straigtforward.
Basically a MLPro environment is a class with 5 main functions. Each environment must apply the
following mlpro functions:

from mlpro.rl.models import *

class MyEnvironment(Environment):
 """
 Custom Environment that satisfies mlpro interface.
 """
 C_NAME = 'MyEnvironment'
 C_LATENCY = timedelta(0,1,0) # Default latency 1s
 C_REWARD_TYPE = Reward.C_TYPE_OVERALL # Default reward type

 def __init__(self, p_mode=C_MODE_SIM, p_latency:timedelta=None, p_logging=True):
 """
 Parameters:
 p_mode Mode of environment (simulation/real)
 p_latency Optional: latency of environment. If not provided
 internal value C_LATENCY will be used by default
 p_logging Boolean switch for logging
 """

 super().__init__(p_latency=p_latency, p_logging=p_logging)
 self._setup_spaces()
 self.set_mode(p_mode)

 def _setup_spaces(self):
 """
 Implement this method to enrich the state and action space with specific
 dimensions.
 """

 # Setup state space example
 # self.state_space.add_dim(Dimension(0, 'Pos', 'Position', '', 'm', 'm', [-50,50]))
 # self.state_space.add_dim(Dimension(1, 'Vel', 'Velocity', '', 'm/sec', '\frac{m}{sec}', [-50,50]))

 # Setup action space example
 # self.action_space.add_dim(Dimension(0, 'Rot', 'Rotation', '', '1/sec', '\frac{1}{sec}', [-50,50]))

 def _simulate_reaction(self, p_action:Action) -> None:
 """
 Simulates a state transition of the environment based on a new action.
 Please use method set_state() for internal update.

 Parameters:
 p_action Action to be processed
 """

 def reset(self) -> None:
 """
 Resets environment to initial state.
 """

 def compute_reward(self) -> Reward:
 """
 Computes a reward.

 Returns:
 Reward object
 """

 def _evaluate_state(self) -> None:
 """
 Updates the goal achievement value in [0,1] and the flags done and broken
 based on the current state.
 """

 # state evaluations example
 # if self.done:
 # self.goal_achievement = 1.0
 # else:
 # self.goal_achievement = 0.0

One of the benefits for MLPro users is the variety of reward structures, which is useful for Multi-Agent RL
and Game Theoretical approach. Three types of reward structures are supported in this framework, such as:

	C_TYPE_OVERALL as the default type and is a scalar overall value

	C_TYPE_EVERY_AGENT is a scalar for every agent

	C_TYPE_EVERY_ACTION is a scalar for every agent and action.

To set up state- and action-spaces using our basic functionalities, please refer to our how to File 02
or here [https://github.com/fhswf/MLPro/blob/main/examples/bf/Howto%2002%20-%20(Math)%20Spaces%2C%20subspaces%20and%20elements.py].
Dimension class is currently improved and we will provide the explanation afterwards!

	Environment Creation for Real Hardware Mode

In MLPro, we can choose simulation mode or real hardward mode. For real hardware mode, the creation of
an environment is very similar to simulation mode. You do not need to define _simulate_reaction, but you
need to replace it with _export_action and _import_state as it is shown in the following:

from mlpro.rl.models import *

class MyEnvironment(Environment):
 """
 Custom Environment that satisfies mlpro interface.
 """
 C_NAME = 'MyEnvironment'
 C_LATENCY = timedelta(0,1,0) # Default latency 1s
 C_REWARD_TYPE = Reward.C_TYPE_OVERALL # Default reward type

 def __init__(self, p_mode=C_MODE_REAL, p_latency:timedelta=None, p_logging=True):
 """
 Parameters:
 p_mode Mode of environment (simulation/real)
 p_latency Optional: latency of environment. If not provided
 internal value C_LATENCY will be used by default
 p_logging Boolean switch for logging
 """

 super().__init__(p_latency=p_latency, p_logging=p_logging)
 self._setup_spaces()
 self.set_mode(p_mode)

 def _setup_spaces(self):
 """
 Implement this method to enrich the state and action space with specific
 dimensions.
 """

 # Setup state space example
 # self.state_space.add_dim(Dimension(0, 'Pos', 'Position', '', 'm', 'm', [-50,50]))
 # self.state_space.add_dim(Dimension(1, 'Vel', 'Velocity', '', 'm/sec', '\frac{m}{sec}', [-50,50]))

 # Setup action space example
 # self.action_space.add_dim(Dimension(0, 'Rot', 'Rotation', '', '1/sec', '\frac{1}{sec}', [-50,50]))

 def _export_action(self, p_action:Action) -> bool:
 """
 Exports given action to be processed externally (for instance by a real hardware).

 Parameters:
 p_action Action to be exported

 Returns:
 True, if action export was successful. False otherwise.
 """

 def _import_state(self) -> bool:
 """
 Imports state from an external system (for instance a real hardware).
 Please use method set_state() for internal update.

 Returns:
 True, if state import was successful. False otherwise.
 """

 def reset(self) -> None:
 """
 Resets environment to initial state.
 """

 def compute_reward(self) -> Reward:
 """
 Computes a reward.

 Returns:
 Reward object
 """

 def _evaluate_state(self) -> None:
 """
 Updates the goal achievement value in [0,1] and the flags done and broken
 based on the current state.
 """

 # state evaluations example
 # if self.done:
 # self.goal_achievement = 1.0
 # else:
 # self.goal_achievement = 0.0

	Environment from Third Party Packages

Alternatively, if your environment follows Gym or PettingZoo interface, you can apply our
relevant useful wrappers for the integration between third party packages and MLPro. For more
information, please click here.

	Environment Checker

To check whether your developed environment is compatible to MLPro interface, we provide a test script
using unittest. At the moment, you can find the source code here [https://github.com/fhswf/MLPro/blob/main/test/test_environment.py].
We will prepare a built-in testing module in MLPro, show you how to excecute the testing soon and provides an example as well.

Scenarios

Add text here!

Pool

Add text here!

	Policies

	Advantage Actor Critic (A2C)

	Soft Actor-Critic (SAC)

	Environments

	Scenarios

Policies

Advantage Actor Critic (A2C) [https://github.com/fhswf/MLPro/blob/main/src/mlpro/rl/pool/policies/a2c.py]

You can get started as follow:

import mlpro.rl.pool.policies.a2c

Soft Actor-Critic (SAC) [https://github.com/fhswf/MLPro/blob/main/src/mlpro/rl/pool/policies/sac.py]

You can get started as follow:

import mlpro.rl.pool.policies.sac

Environments

Grid World Problem [https://github.com/fhswf/MLPro/blob/main/src/mlpro/rl/pool/envs/gridworld.py]

You can get started as follow:

import mlpro.rl.pool.envs.gridworld

Multi-Cartpole [https://github.com/fhswf/MLPro/blob/main/src/mlpro/rl/pool/envs/multicartpole.py]

You can get started as follow:

import mlpro.rl.pool.envs.multicartpole

Bulk Good Laboratory Plant (BGLP) [https://github.com/fhswf/MLPro/blob/main/src/mlpro/rl/pool/envs/bglp.py]

You can get started as follow:

import mlpro.rl.pool.envs.bglp

Robot Manipulator on Homogeneous Matrix [https://github.com/fhswf/MLPro/blob/main/src/mlpro/rl/pool/envs/robotinhtm.py]

You can get started as follow:

import mlpro.rl.pool.envs.robotinhtm

Universal Robots 5 Joint Control [https://github.com/fhswf/MLPro/blob/main/src/mlpro/rl/pool/envs/ur5jointcontrol.py]

You can get started as follow:

import mlpro.rl.pool.envs.ur5jointcontrol

Scenarios

Add text here!

3rd Party Support

Add text here!

MLPro [https://github.com/fhswf/MLPro.git] allows you to reuse widely-used packages and
integrate them to MLPro interface by calling wrapper classes.

At the moment, a wrapper class for OpenAI Gym Environments has been tested and is ready-to-use.
However, it has not been very stable yet and some minor improvements might be needed.

In the near future, we are going to add wrapper classes for PettingZoo and Ray RLlib.

Soure code of available wrappers: https://github.com/fhswf/MLPro/blob/main/src/mlpro/rl/wrappers.py

OpenAI Gym Environments

Our wrapper class for gym environment is pretty straightforward. You can just simply apply
a command to setup a gym-based environment, while creating a scenario.

from mlpro.rl.wrappers import WrEnvGym

self._env = WrEnvGym([gym environment object], p_state_space:MSpace=None, p_action_space:MSpace=None, p_logging=True)

For more information, please check our how to files here.

PettingZoo Environments

Under construction. The wrapper will be available soon.

from mlpro.rl.wrappers import WrEnvPZoo

self._env = WrEnvPZoo([zoo environment object], p_state_space:MSpace=None, p_action_space:MSpace=None, p_logging=True)

Ray RLlib

Under construction. The wrapper will be available soon.

from mlpro.rl.wrappers import wrPolicyRay

wrPolicyRay(...)

Examples

Basic Functions

We provide some examples of MLPro [https://github.com/fhswf/MLPro.git]’s basic funcionalities implementation, which is available on our GitHub file.

	File 01: (Various) Log and Timer [https://github.com/fhswf/MLPro/blob/main/examples/bf/Howto%2001%20-%20(Various)%20Log%20and%20timer.py]

	File 02: (Math) Spaces, subspaces and elements [https://github.com/fhswf/MLPro/blob/main/examples/bf/Howto%2002%20-%20(Math)%20Spaces%2C%20subspaces%20and%20elements.py]

	File 03: (Various) Store, plot, and save variables [https://github.com/fhswf/MLPro/blob/main/examples/bf/Howto%2003%20-%20(Various)%20Store%2C%20plot%2C%20and%20save%20variables.py]

	File 04: (ML) Hyperparameters setup [https://github.com/fhswf/MLPro/blob/main/examples/bf/Howto%2004%20-%20(ML)%20Hyperparameters%20setup.py]

Moreover, you can find the UML diagram of MLPro’s basic funcionalities here [https://github.com/fhswf/MLPro/tree/main/doc/bf].

Reinforcement Learning

We provide some examples of MLPro [https://github.com/fhswf/MLPro.git]’s RL funcionalities implementation, which is available on our GitHub file.

	File 01: (RL) Types of reward [https://github.com/fhswf/MLPro/blob/main/examples/rl/Howto%2001%20-%20(RL)%20Types%20of%20reward.py]

	File 02: (RL) Run agent with own policy with gym environment [https://github.com/fhswf/MLPro/blob/main/examples/rl/Howto%2002%20-%20(RL)%20Run%20agent%20with%20own%20policy%20with%20gym%20environment.py]

	File 03: (RL) Train agent with own policy on gym environment [https://github.com/fhswf/MLPro/blob/main/examples/rl/Howto%2003%20-%20(RL)%20Train%20agent%20with%20own%20policy%20on%20%20gym%20environment.py]

	File 04: (RL) Run multi-agent with own policy in multicartpole environment [https://github.com/fhswf/MLPro/blob/main/examples/rl/Howto%2004%20-%20(RL)%20Run%20multi-agent%20with%20own%20policy%20in%20multicartpole%20environment.py]

	File 05: (RL) Train multi-agent with own policy on multicartpole environment [https://github.com/fhswf/MLPro/blob/main/examples/rl/Howto%2005%20-%20(RL)%20Train%20multi-agent%20with%20own%20policy%20on%20multicartpole%20environment.py]

	File 06: (RL) A2C Implementation [https://github.com/fhswf/MLPro/blob/main/examples/rl/Howto%2006%20-%20(RL)%20A2C%20Implementation.py]

	File 08: (RL) Run own agents with petting zoo environment [https://github.com/fhswf/MLPro/blob/main/examples/rl/Howto%2008%20-%20(RL)%20Run%20own%20agents%20with%20petting%20zoo%20environment.py]

Moreover, you can find the UML diagram of MLPro’s RL funcionalities here [https://github.com/fhswf/MLPro/tree/main/doc/rl].

Game Theory

We provide some examples of MLPro [https://github.com/fhswf/MLPro.git]’s GT implementation, which is available on our GitHub file.

	File 06: (GT) Run multi-player with own policy in multicartpole game board [https://github.com/fhswf/MLPro/blob/main/examples/gt/Howto%2006%20-%20(GT)%20Run%20multi-player%20with%20own%20policy%20in%20multicartpole%20game%20board.py]

	File 07: (GT) Train own multi-player with multicartpole game board [https://github.com/fhswf/MLPro/blob/main/examples/gt/Howto%2007%20-%20(GT)%20Train%20own%20multi-player%20with%20multicartpole%20game%20board.py]

Moreover, you can find the UML diagram of MLPro’s GT funcionalities here [https://github.com/fhswf/MLPro/tree/main/doc/gt].

User Interface

We provide some examples of MLPro [https://github.com/fhswf/MLPro.git]’s SciUI funcionalities implementation, which is available on our GitHub file.

	File 01: (SciUI) - Reuse of interactive 2D,3D input space [https://github.com/fhswf/MLPro/blob/main/examples/sciui/Howto%2001%20(SciUI)%20-%20Reuse%20of%20interactive%202D%2C3D%20input%20space.py]

Moreover, you can find the UML diagram of MLPro’s UI funcionalities here [https://github.com/fhswf/MLPro/tree/main/doc/sciui].

Game Theory

Game Theory (GT) is well-known in economic studies as a theoretical approach to model the strategic
interaction between multiple individuals or players in a specific situation. Game Theory
approach can also be adopted in the science area to optimize decision-making processes in a
strategic setting and often use to solve Multi-Agent RL (MARL) problems.

You can easily access the GT module, as follows:

from fhswf_at_ml.gt.models import *

Some of developed RL frameworks in MLPro can also be reuse in the GT approach.
Thus we can just simply inherit some classes from RL frameworks, such as:

	
	GameBoard(rl.Environent)
	Since you need a unique utility function for each specific player in the GT approach.
A local utility function can be defined as below:

import fhswf_at_ml.rl.models as rl

class GameBoard(rl.Environment):
 """
 Model class for a game theoretical game board. See super class for more information.
 """

 C_TYPE = 'Game Board'
 C_REWARD_TYPE = rl.Reward.C_TYPE_EVERY_AGENT

 def compute_reward(self) -> rl.Reward:
 if self._last_action is None: return None

 reward = rl.Reward(self.get_reward_type())

 for player_id in self.last_action.get_agent_ids():
 reward.add_agent_reward(player_id, self._utility_fct(player_id))

 return reward

 def _utility_fct(self, p_player_id):
 """
 Computes utility of given player. To be redefined.
 """

 return 0

	Player(rl.Agent)

import fhswf_at_ml.rl.models as rl

class Player(rl.Agent):
 """
 This class implements a game theoretical player model. See super class for more information.
 """

 C_TYPE = 'Player'

	Game(rl.Scenario)

import fhswf_at_ml.rl.models as rl

class Game(rl.Scenario):
 """
 This class implements a game consisting of a game board and a (multi-)player. See super class for
 more information.
 """

 C_TYPE = 'Game'

	MultiPlayer(rl.MultiAgent)

import fhswf_at_ml.rl.models as rl

class MultiPlayer(rl.MultiAgent):
 """
 This class implements a game theoretical model for a team of players. See super class for more
 information.
 """

 C_TYPE = 'Multi-Player'

 def add_player(self, p_player:Player, p_weight=1.0) -> None:
 super().add_agent(p_agent=p_player, p_weight=p_weight)

	Training(rl.Training)

import fhswf_at_ml.rl.models as rl

class Training(rl.Training):
 """
 This class implements a standardized episodical training process. See super class for more information.
 """

 C_NAME = 'GT'

You can check out some of the examples on our how to files
or here [https://github.com/fhswf/MLPro/tree/main/examples/gt].

UI Framework SciUI

	Platform-independend framework for creation of own UI scenarios

	Ready-to-run application „SciUI“ detects and starts own scenarios

	Focus on real-time visualization and interaction

	Based on Python standards Tkinter and MatPlotLib

If you are looking for an example of SciUI implementation, we provide
how to files related to this subject.

Add text here!

	Interactive Reinforcement Learning

Interactive Reinforcement Learning

Add text here!

Release Notes

Version XX.XX.XX

Release Highlights:

New Features:

Issued Fixed:

Documentation Changes:

Others:

Papers

Add text here!

Contribution

We look forward to your contributions to MLPro improvements. You can report any bugs, propose
further improvement ideas, add pre-builts environments and algorithms, improve our documentations,
or any kind of improvements.

You can directly contribute on our public GitHub’s repository [https://github.com/fhswf/MLPro.git]
or reach us per email mlpro@listen.fh-swf.de.

Add text here!

Index

 [image: Documentation Status]
 [https://mlpro.readthedocs.io/en/latest/?badge=latest][image: mlpro on pypi]
 [https://badge.fury.io/py/mlpro]
Documentation

Read MLPro documentation online at https://mlpro.readthedocs.io/

Optionally, to build the documentation yourself from the doc/docs/ folder:

clone repository
open MLPro/doc/docs/_build/html/index.html on your browser

Quick Help

Add text here!

Run a Scenario

Scenario is where the interaction between RL agent(s) and an environment with a unique
specific settings takes place. One of the MLPro’s features is enabling the user to apply
a template class for an RL scenario consisting of an environment and an agent/agents.
Moreover, you can create eihter single-agent scenario or multi-agent scenario in a simple
manner.

Add text here!

Train an Agent in a Scenario

Add text here!

	Single-Agent Scenario Creation

from mlpro.rl.models import *

class MyScenario(Scenario):

 C_NAME = 'MyScenario'

 def _setup(self, p_mode, p_ada:bool, p_logging:bool):
 """
 Here's the place to explicitely setup the entire rl scenario. Please bind your env to
 self._env and your agent to self._agent.

 Parameters:
 p_mode Operation mode of environment (see Environment.C_MODE_*)
 p_ada Boolean switch for adaptivity of agent
 p_logging Boolean switch for logging functionality
 """

 # Setup environment
 self._env = MyEnvironment(....)

 # Setup an agent with selected policy
 self._agent = Agent(
 p_policy=MyPolicy(
 p_state_space=self._env.get_state_space(),
 p_action_space=self._env.get_action_space(),

),

)

Instantiate scenario
myscenario = MyScenario(p_scenario=myscenario,)

Train agent in scenario
training = Training(....)
training.run()

	Multi-Agent Scenario Creation

from mlpro.rl.models import *

class MyScenario(Scenario):

 C_NAME = 'MyScenario'

 def _setup(self, p_mode, p_ada:bool, p_logging:bool):
 """
 Here's the place to explicitely setup the entire rl scenario. Please bind your env to
 self._env and your agent to self._agent.

 Parameters:
 p_mode Operation mode of environment (see Environment.C_MODE_*)
 p_ada Boolean switch for adaptivity of agent
 p_logging Boolean switch for logging functionality
 """

 # Setup environment
 self._env = MyEnvironment(....)

 # Create an empty mult-agent
 self._agent = MultiAgent(....)

 # Add Single-Agent #1 with own policy (controlling sub-environment #1)
 self._agent.add_agent = Agent(
 self._agent = Agent(
 p_policy=MyPolicy(
 p_state_space=self._env.get_state_space().spawn[....],
 p_action_space=self._env.get_action_space().spawn[....],

),

),

)

 # Add Single-Agent #2 with own policy (controlling sub-environment #2)
 self._agent.add_agent = Agent(....)

Instantiate scenario
myscenario = MyScenario(p_scenario=myscenario,)

Train agent in scenario
training = Training(....)
training.run()

 _static/minus.png

_static/plus.png

_static/file.png

_static/logo_fh-at.png
Fachgebiet AutomatisierungsTechnik

nav.xhtml

 Table of Contents

 		
 MLPro - Machine Learning Professional

 		
 What is MLPro?

 		
 Getting Started

 		
 Installation

 		
 Requirements

 		
 Install package from PyPI

 		
 Install package from GitHub

 		
 Hello World

 		
 Architecture

 		
 Dependencies

 		
 Mathematics

 		
 Machine Learning

 		
 Adaptivity

 		
 Hyperparameter Tuning

 		
 Overview

 		
 Agents

 		
 Policy

 		
 Model-Based Agents

 		
 Multi-Agents

 		
 Custom Algorithms

 		
 Environments

 		
 Multi-Agent Environments

 		
 Custom Environments

 		
 Scenarios

 		
 Pool

 		
 Policies

 		
 Advantage Actor Critic (A2C)

 		
 Soft Actor-Critic (SAC)

 		
 Environments

 		
 Grid World Problem

 		
 Multi-Cartpole

 		
 Bulk Good Laboratory Plant (BGLP)

 		
 Robot Manipulator on Homogeneous Matrix

 		
 Universal Robots 5 Joint Control

 		
 Scenarios

 		
 3rd Party Support

 		
 OpenAI Gym Environments

 		
 PettingZoo Environments

 		
 Ray RLlib

 		
 Examples

 		
 Basic Functions

 		
 Reinforcement Learning

 		
 Game Theory

 		
 User Interface

 		
 Game Theory

 		
 UI Framework SciUI

 		
 Interactive Reinforcement Learning

 		
 Release Notes

 		
 Version XX.XX.XX

 		
 Release Highlights:

 		
 New Features:

 		
 Issued Fixed:

 		
 Documentation Changes:

 		
 Others:

 		
 Papers

 		
 Contribution

